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Analysis-I FINAL Exam Semester I

1. Let {bn}n≥1 be a sequence defined by b1 = −20 and

bn+1 = 1−
√
1− bn for n ≥ 1.

Show that the sequence {bn}n≥1 is convergent. Find its limit.

Solution: If bk < 0 for some k, then
√
1− bk > 1. That is, bk+1 = 1 −

√
1− bk < 0. Thus

by mathematical induction principle, bn < 0 for all n (since b1 < 0). Since 1 − bn > 1, we have√
(1− bn) ≤ (1 − bn) for all n. Therefore, bn+1 − bn = (1 − bn) −

√
1− bn ≥ 0. i.e., {bn}n≥1

is an increasing sequence. Also, we have observe that {bn} is bounded above by 0. Hence {bn}
is a convergent sequence. Let b be the limit of {bn}. Passing limit on both sides of the equation
bn+1 = 1 −

√
1− bn, we get that 1 − b =

√
1− b. Therefore, b = 0 or 1. Since bn < 0 for all n,

b 6= 1. Hence, lim
n→∞

bn = 0. �

2. Let a < b and c < d be real numbers. Suppose f : [a, b]→ [c, d] is a continuous bijection. Show that
f−1 is continuous.

Solution: Since [a, b] is a compact set, the result follows from Theorem 4.17 of Priniciples of
Mathematical Analysis by Walter Rudin. �

3. Let {xn}n≥1 be a bounded sequence of real numbers and let

M = lim sup
n→∞

xn.

Show that there exists a subsequence {xnk
}k≥1 of {xn}n≥1 such that

lim
k→∞

xnk
= M.

Solution: See Theorem 3.17(a) of Priniciples of Mathematical Analysis by Walter Rudin. �

4. Let h : [−10, 10]→ R be a differentiable function satisfying h(−10) = −10 and h(10) = 10. Suppose
h′(x) ≤ 1 for all x ∈ [−10, 10]. Show that h(x) = x for all x.

Solution: Consider the function g(x) = x − h(x). Then, g′(x) = 1 − h′(x) ≥ 0 on [−10, 10].
Therefore g is an increasing function. But g(10) = 0 = g(−10). Hence, g(x) = 0 for all x. That is,
h(x) = x for all x. �

5. State and prove Rolle’s theorem.

Solution: See Theorem 6.2.3 of Introduction to Real Analysis by Robert G. Bartle and Donald
R. Sherbert. �

6. Let a < b be real numbers and let f : [a, b]→ R be a function. Then f is said to satisfy a Lipschitz
condition if there is a positive real number K such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ [a, b].

1



(i) Give an example of a function not satisfying a Lipschitz condition.

Solution: The function f(x) =
√
x on [0, 2] is not a Lipschitz function. See Example 5.46

(b) of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert for more
detail.

(ii) Suppose f : [a, b]→ R is differentiable and the derivative f ′ is continuous on [a, b]. Show that
f satisfies a Lipschitz condition.

Solution: Since f ′ is continuous on a compact set [a, b], there exist M > 0 such that
|f ′(x)| ≤M for all x ∈ [a, b]. For x, y ∈ [a, b] with x < y, by Mean Value Theorem, we have

f(x)− f(y) = f ′(z) (y − x) for some z ∈ (x, y).

Thus, |f(x) − f(y)| = |f ′(z)| |x − y| ≤ M |x − y| for all x, y ∈ [a, b]. Hence, f is a Lipschitz
function.

�

7. Show that if a series of real numbers
∑∞

n=1 an converges absolutely then
∑∞

n=1 a
2
n converges abso-

lutely. Show that the converse is not true in general.

Solution: Suppose that
∑∞

n=1 an converges absolutely. Then an → 0 as n→∞. Choose N such
that |an| < 1 for all n > N . Therefore, |an|2 ≤ |an| for all n > N . Then by Comparision test,
∞∑

n=N

|an|2 converges and hence
∑

a2n converges.

Converse of this result is not true in general. It can be seen by taking an = 1/n. Note that
∑

1/np

converges if and only if p > 1 (see Theorem 3.28 of Priniciples of Mathematical Analysis by Walter
Rudin). �
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