1. Let $\{b_n\}_{n\geq 1}$ be a sequence defined by $b_1 = -20$ and

$$b_{n+1} = 1 - \sqrt{1 - b_n}$$
 for $n \ge 1$.

Show that the sequence $\{b_n\}_{n\geq 1}$ is convergent. Find its limit.

Solution: If $b_k < 0$ for some k, then $\sqrt{1-b_k} > 1$. That is, $b_{k+1} = 1 - \sqrt{1-b_k} < 0$. Thus by mathematical induction principle, $b_n < 0$ for all n (since $b_1 < 0$). Since $1 - b_n > 1$, we have $\sqrt{(1-b_n)} \le (1-b_n)$ for all n. Therefore, $b_{n+1} - b_n = (1-b_n) - \sqrt{1-b_n} \ge 0$. i.e., $\{b_n\}_{n\ge 1}$ is an increasing sequence. Also, we have observe that $\{b_n\}$ is bounded above by 0. Hence $\{b_n\}$ is a convergent sequence. Let b be the limit of $\{b_n\}$. Passing limit on both sides of the equation $b_{n+1} = 1 - \sqrt{1-b_n}$, we get that $1 - b = \sqrt{1-b}$. Therefore, b = 0 or 1. Since $b_n < 0$ for all n, $b \ne 1$. Hence, $\lim_{n \to \infty} b_n = 0$.

2. Let a < b and c < d be real numbers. Suppose $f : [a, b] \to [c, d]$ is a continuous bijection. Show that f^{-1} is continuous.

Solution: Since [a, b] is a compact set, the result follows from Theorem 4.17 of Principles of Mathematical Analysis by Walter Rudin.

3. Let $\{x_n\}_{n\geq 1}$ be a bounded sequence of real numbers and let

$$M = \limsup_{n \to \infty} x_n$$

Show that there exists a subsequence $\{x_{n_k}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$ such that

$$\lim_{k \to \infty} x_{n_k} = M.$$

Solution: See Theorem 3.17(a) of Principles of Mathematical Analysis by Walter Rudin. \Box

4. Let $h: [-10, 10] \to \mathbb{R}$ be a differentiable function satisfying h(-10) = -10 and h(10) = 10. Suppose $h'(x) \le 1$ for all $x \in [-10, 10]$. Show that h(x) = x for all x.

Solution: Consider the function g(x) = x - h(x). Then, $g'(x) = 1 - h'(x) \ge 0$ on [-10, 10]. Therefore g is an increasing function. But g(10) = 0 = g(-10). Hence, g(x) = 0 for all x. That is, h(x) = x for all x.

5. State and prove Rolle's theorem.

Solution: See Theorem 6.2.3 of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert. $\hfill \Box$

6. Let a < b be real numbers and let $f : [a, b] \to \mathbb{R}$ be a function. Then f is said to satisfy a Lipschitz condition if there is a positive real number K such that

$$|f(x) - f(y)| \le K|x - y|$$

for all $x, y \in [a, b]$.

(i) Give an example of a function not satisfying a Lipschitz condition.

Solution: The function $f(x) = \sqrt{x}$ on [0,2] is not a Lipschitz function. See Example 5.46 (b) of Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert for more detail.

(ii) Suppose $f : [a,b] \to \mathbb{R}$ is differentiable and the derivative f' is continuous on [a,b]. Show that f satisfies a Lipschitz condition.

Solution: Since f' is continuous on a compact set [a, b], there exist M > 0 such that $|f'(x)| \leq M$ for all $x \in [a, b]$. For $x, y \in [a, b]$ with x < y, by Mean Value Theorem, we have

$$f(x) - f(y) = f'(z)(y - x)$$
 for some $z \in (x, y)$.

Thus, $|f(x) - f(y)| = |f'(z)| |x - y| \le M |x - y|$ for all $x, y \in [a, b]$. Hence, f is a Lipschitz function.

7. Show that if a series of real numbers $\sum_{n=1}^{\infty} a_n$ converges absolutely then $\sum_{n=1}^{\infty} a_n^2$ converges absolutely. Show that the converse is not true in general.

Solution: Suppose that $\sum_{n=1}^{\infty} a_n$ converges absolutely. Then $a_n \to 0$ as $n \to \infty$. Choose N such that $|a_n| < 1$ for all n > N. Therefore, $|a_n|^2 \le |a_n|$ for all n > N. Then by Comparison test, $\sum_{n=N}^{\infty} |a_n|^2$ converges and hence $\sum a_n^2$ converges.

Converse of this result is not true in general. It can be seen by taking $a_n = 1/n$. Note that $\sum 1/n^p$ converges if and only if p > 1 (see Theorem 3.28 of Principles of Mathematical Analysis by Walter Rudin).